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Diffuse versus point entanglements  - 
homopolymers  and blends 
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Mechanical properties of linear polymers are frequently described via identification of the 
tangle of chains with an equivalent temporary network. An alternative model is presented here 
assuming diffuse entanglements, in keeping with the tube model. This model allows entangle- 
ment molecular weights to be predicted from knowledge of conformational characteristics of 
the chains. In this paper predictions of the diffuse entanglement model and of the temporary 
network model are compared with experimental data on critical molecular weight from vis- 
cosity and entanglement molecular weight of binary blends, and on crazing properties. Both 
models exhibit similar trends, although quantitative description is generally better under the 
assumption of diffuse entanglements. 

1. Introduction 
The importance of molecular entanglements in deter- 
mining melt properties of thermoplastic polymers 
is well known. For instance, the stress-strain relation- 
ship in the rubbery state [1-5] and the stress-optical 
coefficient [3-10] have been found to correlate well 
using theories originally established to describe 
the behaviour of cross-linked rubbers. Some glassy 
state properties can also be explained by assuming 
the existence of an entanglement "network": craze 
strain, crazing susceptibility and craze stability 
[7, 11-14] and, in particular, the geometrically necess- 
ary entanglement loss during craze formation [14, 15]. 
In these investigations, it is generally either explicitly 
or implicitly assumed that chains are constrained at 
definite sites called "entanglement junctions" or 
"entanglement points", forming a network analogous 
to the permanent network in a cross-linked rubber. 
(Use of rubber-elasticity equations to describe the 
stress-strain behaviour implicitly assumes the mol- 
ecular strands to be stressed at the entanglement 
points and to be free to assume the most probable 
configuration between these points.) Entanglement 
points have even been explicitly identified in terms of 
interactions between polar groups on neighbouring 
chains in the case of PMMA [8]. 

The entanglement network in thermoplastics 
is defined as a temporary network; discrepancies 
between the experimental and theoretical relation- 
ships between birefringence and strain [8, 10] and the 
capacity of thermoplastics to reach higher strains than 
the theoretical maximum strain [13, 7] are generally 
interpreted in terms of stress- or temperature- 
activated disentanglement, or of entanglement slip- 
page. 

On the other hand, the success of the "tube" model 
[16] in explaining certain aspects of viscoelasticity 
[17-19] lends support to the idea that strands of 
average length, Me, are effectively confined to a tube 
or cage formed by neighbouring chains, or, in other 
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words, that the whole length of each chain is involved 
in interactions with its neighbours. The contour length 
between entanglements then appears as the length of 
chain such that local motion of one end is independent 
of constraints on the other end. 

Theories of entanglements in linear polymers 
appear to fall into two classes: those in which strands 
are constrained at definite sites (localized entangle- 
ments) and those in which interactions are distributed 
along the chain (diffuse entanglements). 

In the following sections, evidence from the litera- 
ture in favour of either interpretation will be com- 
pared, and the usefulness of the two classes of theories 
in various applications will be assessed. 

2. Entanglement molecular weight of 
bulk polymers 

2.1. Introduction 
Entanglement molecular weights, Me, are generally 
determined from the plateau modulus, Ge, [20, 21], 
using the relation valid for cross-linked systems: 

Ge = oRT/Me (1) 

where Q is the density, R the gas constant and T the 
temperature. The plateau modulus can, in turn, be 
obtained by integration of the loss modulus in the 
terminal zone [21]. These values are obtained under 
the assumption that the entanglement network is 
equivalent to a cross-linked network. Application of 
the rubbery-elastic stress-strain relationship to a per- 
fect or imperfect phantom-network can be carried out 
by introducing a strain-dependent correction factor 
(Equation 50 in [5]), so that even if values of Me 
obtained by use of Equation 1 are incorrect, differ- 
ences in Me between different polymers, or on modify- 
ing polymers, can be taken as correct. 

As pointed out by Prevorsek and De Bona [22], 
most systematic studies on chain entanglement have 
been restricted to polymers with a relatively flexible 
backbone, such as aliphatic and vinyl polymers. These 
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T A B L E  1 

k(nmmol -I/2) 0(gcm 3) M~ kMI/6(QN) I/3 kM~/6(QN)II32 -1/2 

[13] [23] [13] (simple cubic) (b c c) 

PTBS 0,060 0.95 43 400 3.04 2,71 
PVT 0.068 1,04 25 000 3 24 2.89 
PS 0,070 1.05 19 100 3.10 2,76 

0.0655* 3.0 2.67 
PSMLA 0.073 1.06 19 200 3.35 2.99 
PSAN 76/24 0.077 1.06~ 11 600 3.25 2,90 
PSAN 34/66 0.084 1.07~ 6 380 3.22 2.87 
PMMA 0.076 1.20 9 150 3.22 2.87 
PSMMA 35/65 0.065 1.15 8 980 2.70 2.41 

0.074* 3.08 2.74 
PC 0.094 1.2 2 490 3.20 2.85 
PPO 0.084 1.07 4 300 3.02 2.69 

0,097 t 3.48 3,10 

* Linear interpolation of k 2. 
+Estimated from r0f (see text), 
+~ Estimated as crystalline density/1.1. 

authors investigated the effect of chain stiffness on 
entanglement molecular weight in polycarbonates on 
replacing a fraction of the carbonate groups in bis- 
phenol A polycarbonate by terephtalate or isophtalate 
groups. Their somewhat unexpected result was that an 
increase in chain stiffness leads to an increase in 
entanglement density. Their interpretation of this fact 
was that interpenetration of molecules is higher in the 
case of stiff molecules than it is for flexible molecules 
which form a tightly packed coil [22], 

2.2 Model 
In this section a simple model estimating the degree of 
interpenetration from known characteristics of the 
chain will be given. The degree of interpenetration 
resulting from application of this model will then be 
compared with experimental values. 

An estimate of chain interpenetration can be 
obtained by comparing the mean square end-to-end 
distance of a chain of molecular weight, Mr, with the 
average spacing of such chains. The mean square 
end-to-end distance, de, is given by 

de = kMJ/2 (2) 

where k is a characteristic constant, generally deter- 
mined by SANS or from dilute solution properties. 
The occupied volume is 

K = Me/ (eN)  (3) 

where Q is the polymer's specific mass and N is 
Avogadro's number, so that the mean spacing between 
centres of gravity of chains is: 

a e = A ( M J o N )  ~/3 (4) 

where A is a geometrical constant equal to 1 assuming 
centres of gravity to be spaced on a simple cubic 
lattice, and equal to 2 ~/6 in the case of a face-centred 
cubic lattice. 

The basic idea, which will be checked against 
experimental data in the following sections, is that 
entanglement occurs when the degree of interpen- 
etration characterized by the ratio d~/a~, reaches a 
specific value. This value can be obtained from litera- 
ture data on chain stillness and entanglement molecular 
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weights. Various interpretations of the observed 
value will be discussed, and predictions resulting from 
the assumption of constant interpenetration will be 
compared with predictions resulting from the assump- 
tion of interactions at specific sites and with literature 
data on blends. 

2.3. Comparison with experiment  
The ratio d~/a e is given in Table [ for a series of 
polymers with widely varying entanglement molecular 
weights. It can be seen that this ratio is essentially 
constant, confirming the basic assumption of constant 
interpenetration; no systematic variation of this ratio 
with entanglement molecular weight can be observed. 
Table I calls for the following comments. 

Donald and Kramer give k = 0.065nmmoP/2 for 
PSMMA [13] but this value appears from [23] to be 
appropriate for PSMA. Linear interpolation of k 2 
between the values appropriate for pure PS and pure 
PMMA gives a value of d/a consistent with other 
polymers (and incidentally also gives a better estimate 
of the maximum extension of PSMMA). A justi- 
fication for this procedure is given in Section 4 
(Equation 2). 

The entanglement molecular weight of pure PPO is 
7400 from melt elasticity measurements and 4300 
from extrapolation of entanglement molecular 
weights in PS-PPO blends [1]. As pointed out by 
Donald and Kramer [12] the former value is probably 
too high since, because of the high glass transition 
temperature of PPO, some form of breakdown of the 
entanglement network probably occurs at the high 
temperature required for melt elasticity measurements. 

An estimate of k for PPO can be found from the 
theoretical freely-rotating bond value of r0r(m 1/2) = 
0,0715 nm mol-~/2 and the experimental value of ro/rof 
measured in a 0 solvent, i.e. 1.36 [23] giving k = 
0.097 nm tool -~/z. This is evidently too high, since it 
gives values of d/a inconsistent with those obtained for 
other polymers. 

Solving Equations 2 and 4 for Me gives: 

M~ = A6B~/(~N)Zk6 (5) 

where B is the characteristic "universal", value of 



de/ae, obtained from Table I. In this equation, Me 
appears to depend solely on chain stiffness, through 
the parameter k. Relatively small changes in chain 
stiffness will lead to large variations in Me. On the 
other hand, if the entanglement molecular weight is 
influenced by interactions other than topological 
interpenetrations, these will hardly influence the value 
of de/ae: halving Me will lead to a 10% decrease in 
de/ae. In other words, Table I shows that consider- 
ation of  chain stiffness alone can explain the main 
trends in variation of  entanglement molecular weight 
in polymers between which this parameter varies by a 
factor of  20. Other effects are small and are not con- 
sidered here. 

The stiffness constant k can be linked with struc- 
tural characteristics in the following manner. The 
mean square end-to-end distance, d, of  a sequence of  
ne stiff segments of  length, l, having valence angle 
(~/2 - 0) and asimuthal angle q) is given, to a good 
approximation when ne is large and (cos q)) is small, 
by: 

1 + c o s 0  l + ( c o s ~ )  
d 2 _=_ n e l  2 

1 -- cos0 1 -- (cos@) 

1 + cos0 1 + (cosqb) __ F/eVo l 2 
SI 1 - cos0 1 - {cosqb) 

Me I 1 + cos0 1 + { c o s ~ )  
= (6) 

o N S  1 - cos0 1 - { c o s ~ )  

and 

d 2 l 1 + cos0 1 + (cosqb) 
k2 = ~ = o N S 1  - cos0 1 - ( cosq) )  (7) 

where v0 is the stiff segment volume and S its average 
cross section, and (cosdO) is the average value of 
cos q). A large value of  k could result from a long stiff 
segment and a low value of  S, i.e. no bulky side groups 
(e.g. polycarbonate) or from a high value of  (cos  q)), 
i.e. hindered internal rotation with trans sequence 
favoured over gauche (e.g. PMMA).  

Equation 7 allows quantitative evaluation of  
Prevorsek and De Bonds  [22] results on substituted 
polycarbonates. On replacing a carbonate group by a 
terephtalate (isophtalate) group the stiff segment 
length is increased by a factor of  roughly 2.8 [2], 
the stiff segment molecular weight is increased from 
127 to 358 (358) and the average cross-sectional 
area is unchanged (increased by a factor of 1.4), 
so that, assuming unchanged valence angles in chain- 
redirecting groups, and assuming unchanged hin- 
drance to internal rotation, 

and 

k 2 = 2.8/flc (8) 

k~ - 2 k~ = 1.4k~ (9) 
1.4 

where the suffixes C, T and I refer to carbonate, 
terephtalate and isophtalate, respectively. 

Assuming additivity of squared end-to-end distances, 
for a random copolymer containing weight fraction Wl 
of  polymer 1 and w2 of  polymer 2, the mean square 
end-to-end distance of  a sequence of molecular 

T A B L E  II 

w z Terephtalate Isophtalate 

M~ [121 M~(exp) Me [12] M. (exp) 

0 2450 2426 2450 2426 
0.1 1490 1232 2180 1600 
0.3 671 770 1740 1500 
0.5 357 850 1420 1500 

weight, Me, is given by: 

d~ = k~ (w, Me) + k2(w2Me) 

= [k~ + (k~ - k~)w2]Me (10) 

o r  

k 2 = k~ + (k~ - k ~ ) w  2 ( l l )  

Introducing Equation I I into Equation 5, and 
eliminating unknown constants by use of Mel, the 
entanglement molecular weight of pure polymer 1, 
one obtains: 

M e = Mel/[1 + ( k ~ / k ~ -  l)w213 (12) 

Prevorsek and De Bona's experimental values of  M e 
[22] are compared with the values resulting from 
application of Equation 12 in Table lI. An average 
literature value of  2450 was taken as the entanglement 
molecular weight of  PC. 

The correspondence between experimental and cal- 
culated values is reasonable for replacement by terep- 
htalate groups, less so for replacement by isophtalate 
groups. In both cases experimental values of M e 
decrease faster than calculated for low weight frac- 
tions; this could simply be an indication that (cos (I)) 
is modified, in contradiction to the simplifying 
assumptions used. For  replacement by terephtalate, at 
a weight fraction of 0.5 the calculated entanglement 
molecular weight is reduced to little more than one 
stiff segment, so that use of Equations 1 and 7 is open 
to question. It is interesting to note, however, that 
higher weight fractions could not be investigated 
because of crytallization, which could be thought of as 
the limiting behaviour of "entangled" polymers when 
the entanglement molecular weight decreases to a suf- 
ficiently low number of stiff segments. 

The results summarized in Table II can be inter- 
preted in terms of the topological nature of entangle- 
ments and confirm the basic idea that d~/a e is approxi- 
mately a "universal" constant, i.e. that entanglement 
occurs at a universal value of  interpenetration. It 
would be far more difficult to interpret these results in 
terms of localized interactions at specific sites since it 
is difficult to understand how introduction of  a small 
fraction of terephtalate or isophtalate groups, similar 
in nature to the bisphenol A group, could increase the 
number of  interactions to such a degree. 

2.4. In t e rp re t a t ion  
Various interpretations of  the value found for de/ae 
can be considered. 

First, the characteristic ratio is approximately 3: the 
end-to-end vector of  a strand of  molecular weight, Me, 
is approximately three times the average spacing 
between centres of  gravity of  these strands. In other 
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words, neighbouring chains interacting with one end 
of the strand are not in direct contact with chains 
interacting with the other end of the strand. The 
entanglement molecular weight then appears as the 
smallest value such that motion of one end of the 
strand is independent of constraints on the other end, 
i.e. such that both ends can be considered to be firmly 
embedded in the medium. In this interpretation, the 
"strand" does not begin or end at any definite point 
along the chain length; in particular, a chain slightly 
shorter than Me is not "unentangled", but rather 
"partially entangled", and there are no "dangling 
ends": the first "entanglement length" starts at the 
chain end. 

A second possible interpretation can be given by 
estimating the total number of strands in the volume 
pervaded by a reference strand. An estimate of the 
pervaded volume is given by (fc c): 

(2s) 3 2 d3 (13) 
V -  21/2 = ~375 

so that the number of strands in this volume is, on 
average: 

2 k.3/1//3/2 n = - 9  . . . . .  e (eN/Me) 

= 0 " 3 8 k 3 M l / Z e  oN (14) 

This works out as approximately 12. This could be 
taken to mean that each strand interacts with twelve 
others. This, however, is too simplistic. Firstly, only 
part of the reference strand is present in the volume 
given by Equation 13. This is also true of all other 
chains, so that the total number of strands partly 
present in the pervaded volume is far greater than 
twelve. On the other hand, the reference strand can- 
not, of course, be present everywhere in the pervaded 
volume, so that it interacts with far fewer than the 
total number of strands. On the whole, this interpret- 
ation is somewhat unenlightening. However, it will be 
useful to remember (see Section 5) that the pervaded 
volume must reach a certain value for a strand to be 
considered entangled. 

A third interpretation, due to Rault [24], is based on 
the ratio of the occupied volume to the pervaded 
volume: according to Rault, this ratio, equal to Me/ 
(QNd3), works out as approximately 3% which is 
close to the value of the free volume at the glass 
transition. 

It should be pointed out, however, that the numeri- 
cal value of this ratio depends sharply on the radius 
used to define the pervaded volume. Assuming a 
gaussian chain of n statistical segments of length 10, the 
probability of finding the mth segment at a distance 
smaller than r from the origin is 

4 [ 1 ( 3  ~U2r -(3/2m)/(,2/,~1 
P ( r, m ) = -~-~ - k ~m J Toe 

For 

I-/ 3 \1/2 r q 
+ erfL~2--mm) 10J (15) 

r2 = nl~ the average probability for the n 
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segments works out as 0.84, so that the sought ratio is 

0.84MeloN 
-- 6.3 x 10 -3 (16) 4 ~k 3 M3/2 

whereas for r 2 = s 2 = nl~/6 the average probability is 
0.27 and the ratio is 

0.27 Me/QN 
3 x 10 -2 (17) 

4 7 c k 3 M 3 / 2 / 6 3 / 2  - -  

The value corresponding to the free volume at the 
glass transition (0.025) would be obtained for a sphere 
having a radius slightly larger than the radius of 
gyration, so that the correspondence seems accidental. 

In conclusion, data on bulk homopolymers and 
copolymers are in support of the diffuse, topological 
nature of molecular entanglements, and of a universal 
value of the degree of interpenetration of entangled 
strands. 

3. B i n a r y  b l e n d s  - h o m o p o l y m e r s  
3.1. Critical molecular weight 
In this section, data on viscosity and on crazing sen- 
sitivity of binary mixtures of narrow fractions of 
polystyrene will be examined in the light of the ideas 
expressed in the preceding section. A relationship will 
first be sought between entanglement molecular 
weight and weight fraction of high molecular weight 
compound. 

First consider a polymer of molecular weight Mj in 
solution in a solvent or polymer of molecular weight 
low enough to assume negligible contribution to the 
entanglement network. 

Mes = 

Equation 5 can be written: 

Me0 (~~ (k~ 6 (18) 

where subscript 0 refers to the bulk polymer, subscript 
s to the solution and 0s/00 is the weight fraction of 
polymer 1, i.e. wl. 

If the solvent acts as a 0 solvent, k0 = ks and 
Equation 18 predicts the entanglement molecular 
weight to be proportional to wi -2. 

In a good solvent, the coil will expand and, if dg and 
do are the coil end-to-end distance in a good and 0 
solvent [25], 

or 

dg = doWl 1/8 (19) 

ko = ksw? I/8 (20) 

Equation 18 then becomes: 

Meg = Meow1 s/4 (good solvent) (21) 

Meo = Meow? 2 (theta solvent) (22) 

As pointed out by de Gennes [25], in a binary 
mixture the low molecular weight component acts as 
a good solvent if the ratio of molecular weights is 
sufficiently large. 

On the other hand, if point entanglements are 
assumed, and if every contact between two polymer 
molecules has a constant probability of entanglement 

Mep = Meo/W~ (23) 



T A B L E  l l I  

W I Mc Mcw~/4 Mew ~ MSI 

1 (melt, 165 ~ C) 32 000" 32 000 32 000 32 000" 
0.312 (in PS 2400, melt, 217 ~ C) 100000" 23 320 9 730 31 200 
0.55 ~in n-butyl benzene, 30 ~ C 74 550 35 310 22 550 41000" 
0.255 [ 149 000 27 000 9 690 38 000" 
0.415 ~ in di-octyl phthalate, 25 ~ C 62 650 20 870 10 790 26 000" 
0.310 [ 83 870 19 400 8 060 26 000" 

*[391. 
*[20t. 

An estimate of M e can be obtained from the break in 
viscosity-molecular weight data. This gives the critical 
molecular weight Mr, which is larger than M e by a 
polymer-dependent factor [20]. In a given polymer- 
solvent system, however, it can be hoped that vari- 
ations in Mc will closely reflect variations in Me. There 
is some uncertainty in determining Mc from viscosity 
data, especially in a mono-disperse polymer for which 
the low molecular weight portion of the graph has a 
distinct downward curvature. 

Data of Me for polystyrene in solution and in a 
binary mixture are given in Table III, together with 
estimates of Me0 from Equations 21 to 23. Evidently, 
the combination of diffuse entanglements and neglect 
of coil expansion is totally inadequate. Equation 23 
appears to offer a more adequate description of vari- 
ation of M~ than Equation 21; however, uncertainties 
in experimental data do not allow us to choose 
between the two. It should be pointed out that in the 
derivation of Equations 21 to 23 it was assumed that 
the low molecular weight component does not par- 
ticipate at all in the entanglement network, so that the 
values of Me predicted by these equations are expected 
to be overestimated (i.e. the values of M~0 predicted 
from experimental values of Mc should be under- 
estimated), 

3.2. Craze properties 
It was observed some years ago by Wellinghoff and 
Baer [11, 26] that stable crazes occur in monodisperse 
PS at molecular weights above 37 500; this is roughly 
2 x Me. However, in a binary blend 1% high mole- 
cular weight PS (M --- 67 x 104) in a matrix of low 
molecular weight PS (M = 104) was sufficient for 
highly fibrillated crazes to grow in thin films (50 to 
600 nm thickness) and even 0.1% of high molecular 
weight component was sufficient to stabilize craze 
growth [26]. Since the end-to-end distance obtained 
using k from Table I (50 nm) is somewhat smaller than 
the average spacing between molecules at this con- 
centration (100 nm), it was concluded that "entangle- 
ment interactions are not completely necessary for 
fibre formation". 

This would be true in the case of a 0 solvent, but for 
a good solvent, by applying Equation 21, taking 
Me = 67 x 10 4 and Meo = 19 x 102, a weight frac- 
tion of 5.8% is found. This would be the lowest weight 
fraction at which an entanglement network could be 
formed by molecules o f M  = 67 x 104 in a low mole- 
cular weight solvent. The "solvent" in this case is a 
polymer of M = 10 4, which is not much lower than 
the entanglement molecular weight in the bulk. 

Although polystyrene of this molecular weight can- 
not form an entanglement network, it can help in 
entangling the high molecular weight component; in 
other words, the ratio d/a = B necessary for forma- 
tion of an entanglement network may drop slightly at 
low concentrations. Introducing Equation 20 into 
Equation 5 and solving for w~, 

wl = - -  \Bo,  ] (good solvent) (24) 

o r  

wl = (0 solvent) (25) 

For M0 = 19100, M = 570000 and B/Bo = 2/3, 
w~ = 0.8% in a good solvent and 5% in a 0 solvent. 
At Bo/B = 2.5 (i.e. B -~ 1) these values drop to 
0.07% and 1.1%, respectively. At this concentration 
the end-to-end distance is practically equal to the 
mean spacing of the molecules. The value found for a 
good solvent is remarkably close to the concentration 
(0.05%) at which an occasional fibril was found to 
span cleaved deformation zones in low molecular 
weight PS [11]. 

4. Blends of compatible polymers 
4.1. Entanglement molecular weights 
Compatibility of blends of PPO and PS has convinc- 
ingly been demonstrated by SANS [2%29]; the radius 
of gyration of PS in the blend was, within experimen- 
tal scatter, the same as in the homopolymer. In 
Wignall et al. [27] the molecular weight of PS was 
comparable with that of PPO. 

The variation of entanglement molecular weight 
(determined from the plateau modulus) with com- 
position in blends of PPO with PS was found by Prest 
and Porter [1] to follow Equation 26 

Mo0 
Me - (26) 

1 + 3.2wl 

where M,0 is the entanglement molecular weight of 
polystyrene and wt the weight fraction of PPO. The 
two polymers were of comparable molecular weights, 
so that they are expected to behave approximately like 
0 solvents for each other. 

An average value of d 2 in the blend can be obtained 
assuming additivity: 

d 2 = Wld ? + w2d ~ (27a )  

w,(k~Mo) + w2(k~M~) (27b) 

k2M, (27c) 
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T A B L E  IV Relative decrease of entanglement molecular 
weight with weight fraction of PPO in PPO/PS blends 

w 2 Equation 26 Equation 29 Equation 31 
(exp) (diffuse) (localized) 

0.05 1.16 1.12 1.008 1.07 
0.2 1.64 1.52 1.12 1,48 
0.4 2.28 2.20 1.48 2,52 
1 4.2 5.38 4 9 

Me (PPO) 4550 3550 4780 2100 

Identifying Equation 27c with Equation 27b: 

k ~ = Wlk~ + w~k~ (28) 

Introducing Equation 28 into Equation 18, and 
rearranging, the following expression is found in the 
case of diffuse entanglements: 

Mo02(002/0) 2 
Me = [1 + (k~/k~ - 1)w,] 3 (29) 

On the other hand, assuming entanglements to 
occur at specific sites, the number of entanglements 
per unit volume should vary as: 

N ~ w~fl 2 + ~22f22 + w, w2fJ2 (30) 

where f~.2 are proportional to the probabilities that a 
contact between chains will result in an entanglement. 
Under this hypothesis, the entanglement molecular 
weight would be inversely proportional to N. Since Me 
must reduce to the value for each pure polymer when 
w~ (or w2) = 0, fl2/f22 can be identified with Mez/Met, 
so that, neglecting changes in specific volume, 

Me~ 
Me -'= w 2 "-t- w~(Mel/Me2 ) -'F w, w2(Mr162 '/2 (31) 

The denominators in Equations 26, 29 and 31 are 
compared in Table IV. In Equation 29, the average 
values for k from Table I are used for both polymers, 
and volume changes are neglected. In Equation 31, 
two values of Me1 ~Me2 are  tried: Mel ~Me2 = 4, giving 
approximately the same value of M e for pure PPO as 
that found by extrapolation of experimental values in 
1; and M~/Mez = 9, giving a reduction in Me with 
weight fraction of PPO comparable with experiment, 
but giving an unreasonably low value of Me for pure 
PPO. Also, Equation 31 is strongly nonlinear, in con- 
trast with experiment. Equation 29 gives a good fit 
with experiment although all ratios are somewhat too 
low; however, the volume of mixing of PPO with PS 
is known to be negative [29]; taking the change in 
density into account would result in a better fit. 

Evidence from variation of entanglement molecular 
weight in blends therefore lends support to the 
hypothesis of diffuse entanglements. 

4 .2 .  C r a z i n g  
Craze extension ratios in a wide variety of materials 
have been shown to correlate well with the maximum 
extension ratio computed as l~/d, where l~ is the chain 
contour length between entanglements and d the mean 
square end-to-end distance [13]. An interesting exten- 
sion of this work was the investigation into properties 
of crazes in blends of PPO with low or high Mw PS 

[12]. The materials used were PPO (Mw = 35000, 
Mn = 15000), PS (Mw = 300000, Mn = 113000) 

and monodisperse PS (M w = 4000, Mw/M~ <~ 1.06). 
The approximate excluded volume parameter 
= NI/=/N was introduced by de Gennes [25] as an 

indicator of expansion of a molecule of N~ units in a 
solution of molecules of N units: the chain is ideal if 

~ 1. What the unit should be is not quite clear, but 
it appears logical to take a statistical segment, i.e. 
Me/2~,~, giving approximately 1000 for PS and 500 for 
PPO. For PS chains in a blend of high MwPS with 
PPO, ~ = 3001/2/70 = 0.25; no coil expansion is 
expected in this system. For PPO in low molecular 
weight PS, r = 70!/2/4 = 2.1; expansion of PPO is 
therefore expected. The chain contour length between 
entanglements in the high molecular weight blend is 

[(') wl + Me (32) le = ~ ~ 2W2 

and the mean square end-to-end distance is given by 
Equations 27 and 28 so that, substituting b m for 
(1/M)l/2 

l e = 1 + (b 1/b 2 --  1)w 2 ( M e ~  1/2 
2m~x 2max2 (33) 

d k/k2 \M2 J 

where subscript 1 refers to PPO and 2 to PS. 
Introducing Equation 18 into Equation 33, Equation 

34 is obtained in the case of ideal behaviour and 
Equation 35 in the case of coil expansion. (Numerical 
coefficients are taken from Table I or [13]; identity of 
b2/b 1 with k2/k~ is accidental) 

1 + 0.75w 2 
/~max : (1 + 0.75 w2) 2 2maxt (34) 

1 + 0.75w 2 
~'max = [(1 -- W2) 3/4 + 1.75 w2] 2 Am"x2 (35) 

Equation 34 corresponds to essentially the same 
interpretation as that given by Kramer [14], although 
k for the blend was found by linear instead of quadrat- 
ic interpolation. Although the justification for quad- 
ratic interpolation is clear, in practice the difference is 
numerically very small. 

Equations 34 and 35 are compared with Donald 
and Kramer's [12, 13] results in Fig. la, using J~max : 4 
for pure PS. The fit is excellent for w2 < 0.5 but 
predicted values for 2ma x are  too low for w2 > 0.5. It 
has been shown that annealing has no measurable 
effect on craze growth kinetices [30]. However, anneal- 
ing is known to increase the yield stress, which is also 
the stress at the craze tip, and craze strain has been 
shown to increase with the stress acting during craze 
growth [31], so that an increase in craze strain on 
annealing is not unexpected. Equations 34 and 35 
were therefore recalculated using 2 .... = 2.6 (exper- 
imental value). Equation 34 is remarkably consistent 
with data for both annealed and unannealed samples. 
Equation 35 underestimates 2 . . . .  thus confirming that 
the blend exhibits ideal behaviour. 

In the PPO-low molecular weight PS blend, the 
polystyrene molecules will behave like a good solvent 
for PPO; also, since the polystyrene molecular weight 
is well below the entanglement molecular weight, only 
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Figure 1 Variation of  craze strain with composit ion in P P ( ~ P S  blends. (a) PPO + high molecular weight PS. o,  experimental [12]. (b) 
PPO + low molecular weight PS. zx, experimental [12]. Curves: theory (see text). 

PPO will take part in the entanglement network. 
Equations 21 to 23 give the appropriate concentration 
dependence of entanglement molecular weight for 
delocalized and point entanglements, respectively. 
The chain contour length scales like Me and the end- 
to-end distance is given by Equation 19, so that the 
maximum strain becomes: 

/~max = /~max I W1 t/2 (36) 

•max = 2maxl W13/8 (37) 

Equation 36 is appropriate for delocalized entangle- 
ments and Equation 37 for point entanglements. 
These equations are compared with experimental 
results in Fig. lb taking 2ma• = 2.6 since all results 
were obtained on annealed samples. There is not a 
great deal of difference between the two, although the 
assumption of point entanglements gives predictions 
which are systematically too low. 

Another comparison between the two assumptions 
can be made by estimating the minimum concen- 
tration Wm for a network to exist. In the point entangle- 
ment picture, each molecule should be at least twice the 
entanglement molecular weight for a network to exist, 
so that, from Equation 23 

W m • 2 Meo/M n (38) 

(The appropriate molecular weight is the number 
average molecular weight since Equation 38 expresses 
the fact that there must be as many entanglement points 
as chain ends.) This works out as Wn, = 0.53. 

Assuming diffuse entanglements, a chain is entangled 
with the network if constraints at either end are 
independent of each other and if each chain interacts 
with enough other chains. Thus, only one "entangle- 
ment length" per chain is required. The critical con- 
centration is given by: 

W m = ( M e o / M n )  4/5 (39) 

which works out as Wm = 0.37. This value is remark- 
ably close to the concentration (between 0.33 and 0.4) 
at which crazes were found to become very fragile [12]. 

Although in this system both models predict similar 
values of the critical concentration, the assumption of 
diffuse entanglements gives a better fit with experiment. 

5. Discussion 
Evidence from a variety of experiments is in favour of 
diffuse rather than localized entanglements. However, 
a wealth of information has been obtained in the past 
by assuming the entanglement network to be equiv- 
alent to a temporary cross-linked network. One might 
query the usefulness of information obtained in this 
way. 

The first question to be answered is: what is 
the significance of entanglement molecular weights 
obtained from the plateau modulus assuming a net- 
work of equivalent temporary crosslinks, if no such 
crosslinks exist? A qualitative answer can be obtained 
from Flory and Erman's work [32] on elasticity of 
constrained networks: in this theory, applicable to 
cross-linked rubbers, diffuse entanglements are 
assumed to act solely through constraints on fluctu- 
ations of junctions. This theory cannot, of course, be 
extrapolated to the case where only diffuse entangle- 
rnents exist, since if there are no junctions there can be 
no constraints on fluctuations of junctions. However, 
it should be noted that this theory predicts the contri- 
bution to the elastic force of diffuse entanglements to 
be of a magnitude comparable with that of the phan- 
tom network at zero strain. Whether the modulus is 
assumed to be due to a temporary (phantom) network 
alone, a temporary network with diffuse entangle- 
ments, or diffuse entanglements alone, the order of 
magnitude of the entanglement molecular weight 
obtained will not be altered. In other words, com- 
parisons between entanglement molecular weights 
obtained from the plateau modulus can be accepted as 
valid; absolute values should not be taken too literally. 
It should be noted that the fact that absolute values of 
entanglement molecular weights are unknown does 
not invalidate the conclusions of Section 2: the ratio 
do/a~ is relatively insensitive to M~; is equivalent to 
multiplying de/a e by 1.12. 

Values of Me obtained from the plateau modulus 
are clearly reasonable, since they yield estimates of the 
natural draw ratio which are comparable with experi- 
mental values for a wide variety of polymers [13]. 

The apparent increase of Me with strain, obtained, 
for example, from data on birefringence [8, 10], should 
also be viewed with caution. As shown by Erman and 
Flory [5], in a network with constraints due to diffuse 
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entanglements, the stress-optical coefficient decreases 
with strain. In an entirely different approach taking 
account of two components of strain (orientational 
and extensional) Brown and Windle have shown that 
the development of birefringence with strain can be 
described adequately, both in the rubbery [33] and 
glassy states [34] without assuming an increase in 
entanglement molecular weight on drawing. (Although 
the entanglement molecular weight does not appear 
explicitly in Brown and Windle's theory, constant Me 
should logically be equivalent to constant limiting 
draw ratio due to the extensional mode.) Relation- 
ships between draw ratio and entanglement molecular 
weight obtained via identification of orientation- 
strain data with rubber-elasticity theory should not be 
taken too literally; that there is an increase is, how- 
ever, apparent from the fact that the maximum 
recoverable extension of thermoplastics is limited by 
the molecular weight of the whole chain [35]. In keep- 
ing with the views expressed in Section 2, this could be 
attributed to the fact that deformation of the pervaded 
volume is not affine, so that a given strand interacts 
with fewer chains with increasing strain. (At full exten- 
sion it interacts with at most six neighbours.) A 
publication discussing this point in more detail is in 
preparation. The fact that the conformation of the 
whole chain is active in determining the entanglement 
characteristics of a polymer is also apparent from the 
work of Wool and co-workers on crack-healing 
phenomena in polymers [36-38]: the full strength of 
the virgin material is only recovered once inter- 
penetration over a distance comparable with the ran- 
dom coil dimensions of the whole chain has occurred. 

6. C o n c l u s i o n s  
A model for diffuse entanglements has been proposed, 
giving an adequate description of a variety of 
phenomena. This description is never worse, and in 
most instances is better, than that resulting from the 
point entanglement or temporary network model. It 
allows prediction of the entanglement molecular 
weight from knowledge of chain characteristics, in 
particular chain stiffness. 
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